

## CFD Simulation of Cavitation in an Internal Gear Pump



Dr. Andreas Spille-Kohoff Jan Hesse CFX Berlin Software GmbH Berlin

andreas.spille@cfx-berlin.de



#### Contents

- Introduction
- Geometry and mesh
- Simulation setup
- Results of single-phase simulation
- Results of cavitation simulation
- Summary and conclusions





# E F K L I N

### Introduction into internal gear pumps:

- Positive displacement machine:
  - Liquid is displaced between large exterior gear and small interior gear
  - Crescent divides low and high pressure side (as a seal)
  - Suction / discharge can be in radial or axial direction
- Advantages:
  - Liquids with wide viscosity range, even with particles
  - Discharge rate almost independent of pressure conditions







- Inner rotor:
  - 13 teeth
  - 24.4 mm outer diameter
- Outer rotor:
  - 19 teeth
  - 34.0 mm outer diameter
- 4.77 mm eccentricity
- 16.1 mm thickness
- Suction / discharge in axial direction





- Stationary part:
  - suction and pressure port with
    6 mm diameter and
    10 mm length





- Stationary part:
  - suction and pressure port with
    6 mm diameter and
    10 mm length
  - axial interfaces between ports and rotors
  - crescent to separate chambers





- Radial clearances:
  - internal gear to crescent: 65 µm
  - external gear to crescent: 50 μm
  - between gears: >100 µm (no contact point)
- Axial clearances can be included





#### Mesh:

- Stationary part:
  - ANSYS Meshing for hybrid mesh
  - 800,000 elements, 280,000 nodes
- Rotating parts:
  - TwinMesh for hexahedral meshes
  - 20 radial x 30 axial x 46 per tooth
  - internal gear 360,000 elements
  - external gear 520,000 elements





## What is TwinMesh?

- Challenges in geometry
  - two intermeshing gears
  - size-changing chambers
  - very small clearances (5-50 μm)
- Challenges in flow modelling:
  - transient with mesh deformation
  - strong gradients and high velocities in small gaps

#### Challenges in mesh generation:

- high mesh quality
- constant mesh topology to avoid interpolation
- ensure continuous mesh motion
- small manual effort, but flexible

## SpaceClaim / DesignModeler





#### Mesh:

- Grid interfaces
  - GGI between rotating and stationary parts





#### Mesh:

- Grid interfaces
  - GGI between rotating and stationary parts
  - GGI between rotating parts





### Simulation setup:

- Single-phase flow: water at 25°C
- transient simulation with 500 to 10,000 rpm for internal gear
- 20 to 200 meshes per tooth
- SST turbulence model
- suction and pressure side as opening with total pressures of 1 bar and 10 bar
- no-slip walls
- approx. 3 hours on 8 cores for 40 time steps (one tooth)





#### Single-phase results:

- Pressure:
  - linear pressure increase at crescent
  - sharp pressure increase between gears
  - pressure peaks <1 bar and >10 bar in intermeshing region



E FX

## Single-phase results:

- Velocity:
  - fluid is displaced in chambers towards pressure side (rotational speed < 5 m/s)</li>
  - backflow in radial clearances with >10 m/s, in intermeshing clearance with >30 m/s





#### Single-phase results:

• Time-resolved results (40 meshes per tooth)



35. CADFEM ANSYS Simulation Conference 2017



#### Single-phase results:

• Time-averaged results



35. CADFEM ANSYS Simulation Conference 2017



#### **Results with cavitation:**

• Time-averaged results





#### **Results with cavitation:**

• Time-resolved results (40 meshes per tooth)



35. CADFEM ANSYS Simulation Conference 2017

E F X

## **Results with cavitation:**

- Animation for 4000 rpm:
  - vapor is generated where teeth separate
  - vapor condensates before crescent
  - only water is displaced along crescent
  - same massflow as singlephase case



#### >10% vapor volume fraction

E F K L I N

## Results with cavitation:

- Animation for 8000 rpm:
  - vapor is generated where teeth separate
  - vapor stays at internal gear along crescent
  - water and vapor are displaced along crescent
  - less massflow as singlephase case



#### >10% vapor volume fraction

21

#### Cavitation with Rayleigh-Plesset model:

- Homogeneous Euler-Euler multi-phase simulation
  - Condensation if p>p<sub>v</sub>:
  - Evaporation if  $p < p_v$ :  $\dot{m}_{fg} = F \frac{3r_{nuc}(1-r_g)\rho_g}{R_{nuc}} \sqrt{\frac{2}{3} \frac{|p_v - p|}{\rho_f}}$

35. CADFEM ANSYS Simulation Conference 2017

- accelerates convergence and mass conservation, but less stable
- cavitation finite pcoef factor=0 (old behaviour: 1)
- Combination with "Cavitation Pressure Coefficient Factor" possible

 $\dot{m}_{fg} = F \frac{3 r_g \rho_g}{R_B} \sqrt{\frac{2}{3}} \frac{|p_v - p|}{\rho_f}$ 

- But pressure in simulation still drops below  $p_v$ , even below 0 Pa!
  - model coefficients calibrated on hydrofoils and ship propellers
  - second order term and surface tension neglected in derivation of RP model
  - vapor assumed incompressible at saturation pressure  $\rightarrow$  ideal gas law
  - outgassing of dissolved gas neglected  $\rightarrow$  full cavitation model

$$p_v = 3574 \text{ Pa}$$

$$R_{nuc} = R_B = 1 \mu m$$

$$r_{nuc} = 5E-4$$

$$F_{vap} = 50$$

$$F_{cond} = 0.01$$





#### Increasing rotational speed (periodic state for each rpm):

ANSYS R18.2



35. CADFEM ANSYS Simulation Conference 2017

## E F X



35. CADFEM ANSYS Simulation Conference 2017



#### Summary and conclusions

- TwinMesh and ANSYS CFD
  - simulation of PD machines
  - high quality meshing, easy setup
- Simulations of single-phase flow
  - backflow through radial clearances
  - pulsations of massflow
- Cavitation simulations
  - blockage effect of cavitation: vapor is displaced in the chambers
  - massflow decreases
- Cavitation model needs further improvements



#### For more information, visit our stand!