

CFD Simulation of a dry Scroll Vacuum Pump including Leakage Flows

34. CADFEM ANSYS Simulation Conference October 5 – 7, 2016, NCC Ost, Messe Nürnberg

Jan Hesse, <u>Rainer Andres</u> CFX Berlin Software GmbH, Berlin, Germany

Introduction

- Numerical simulation results of a dry scroll vacuum pump (DSVP) in comparison to measurements of Li et al. (2010)
- Applications of a DSVP
 - In food industry for packing technology or freeze-drying
 - In metallurgy for degassing of melt or inside a coating line
 - In research vacuum technology is used for electron microscopes or mass spectrometer

34. CADFEM ANSYS Simulation Conference October 5 – 7, 2016, NCC Ost, Messe Nürnberg

Introduction

- DSVP is complex from the fluid dynamics view
 - Orbiting scroll wrap relative to the fixed scroll wrap
 → time changing working chamber volume
 - Small radial gaps between the wraps and axial gaps between wraps and casing
 - Compressible fluid
 - Properties of the vacuum could have to be taken into account

- The geometry is modelled as specified in (Yue et al., 2015)
 - In addition axial gaps are included (30 microns)

Geometry of the scroll wraps (Yue et al., 2015)

Simulation domain

Meshing

- Chamber modelling
 - Immersed solid
 - Simple mesh generation (+)
 - Many restrictions in solver modelling (-)
 - Remeshing
 - Automatic mesh generation (+)
 - High number of elements and mesh quality issues (-)
 - Manual generation
 - Best mesh and numerical quality (+)
 - High manual effort (-)

(b)

Meshing

- Stator domain meshed with **ANSYS Meshing**
 - Number of elements: 360 000
- Rotor domain meshed with TwinMesh
 - Number of elements: 1.6 Mio.

Meshing

• Animation of the mesh movement

Simulation Setup

Commercial CFD solver ANSYS CFX

- Stator-rotor connection GGI (Generalized Grid Interface)
- Fluid: Air ideal gas
- Turbulence model: SST (Shear Stress Transport)
- Inlet
 - Absolute Pressure (17 kPa)
 - Temperature (20°)
- Outlet
 - Absolute Pressure (95 kPa)
- Rotational speed (1704 rpm)

Simulation Setup

• Time step

- Calculated from the rotational speed and the angle step
- Angle step is 1 degree
- Flow regime
 - Boundary condition set to no slip wall (Knudsen < 0.01)

• Discretization

- Advection scheme: high resolution
- Transient scheme: second order backward Euler
- Simulation wall clock time
 - 1 day per rotation on 8 core computer (Intel(R) Xeon(R) CPU E5-2637 v2)

- Our CFD results in comparison with Yue's CFD results
 - Same setup except the outlet pressure

Comparison of our simulation results with the CFD results of Yue et al. (2015)

- Our CFD results in comparison with Li's measurement results
 - Measurement data is shifted to get the correct pressure drop position

Comparison of our CFD results with measurements of Li et al. (2010, Vacuum 85)

- Our CFD results in comparison with Li's measurement results
 - Change the post-processing method from measurement point to measurement circle with a location away from the wrap

• Animation of the pressure on a slice plane in the axial gap on discharge side

 Cross-sectional view of the pressure, velocity and temperature with suction pressure of 17 kPa and rotational speed of 1704 rpm

- Comparison of theoretical approach of Li et al. (2010, Vacuum 85) with our CFD results using a wall temperature of 65°C and an adiabatic wall
 - The effects of wall heat transfer have a strong influence on the working process

Animation of the flow velocity

- This presentation shows
 - Presentation includes CFD results of a dry scroll vacuum pump calculated with ANSYS CFX
 - CFD results are compared with measurement data and other CFD results
 - TwinMesh is used to realize the mesh movement
 - The CFD results are in good agreement with the measurements
 - The effects of wall heat transfer have a strong influence on the working process

- Possible next steps
 - Perform CFD simulations with realistic temperature boundary conditions or CHT solid
 - Get more detailed measurement data and compare it with CFD results
 - Perform FSI simulation to see the influence of the temperature on the casing deformation

Thank you for your attention!

jan.hesse@cfx-berlin.de rainer.andres@cfx-berlin.de