

TwinMesh for Positive Displacement Machines: Structured Meshes and reliable CFD Simulations

05.06.2014

Dipl.-Ing. Jan Hesse, Dr. Andreas Spille-Kohoff CFX Berlin Software GmbH Karl-Marx-Allee 90 A 10243 Berlin

Contents

- Introduction
- Methods for chamber modelling
- TwinMesh
- Simulation results
- Summary

Introduction

• Positive displacement machines (examples)

Screw compressor

Gear pumps

Introduction

Characteristics of the geometries

- Two rotating rotors (often screwed)
- Size-changing chambers with very small clearances between the lobes and between rotors and casing

Characteristics of the flow

- Cavitation (Multiphase)
- Non-newtonian fluid
- Compressibility
- Real-gas properties
- Turbulence
- Viscous heating, etc.

Lobe pump

Methods for chamber modelling

How can I model this complex behavior in my CFD-simulation?

ANSYS Conference & 32nd CADFEM Users' Meeting 2014, June 4 - 6, 2014, NCC Ost, Messe Nürnberg

Ę

Methods for chamber modelling Immersed-Solid

- Advantages
 - Fast only one mesh for fluid and solid volumes
 - Variable time step control
- Disadvantages
 - Insufficient wall treatment
 - Multiphase is not available (e. g. Cavitation)
 - Only incompressible fluids
 - Possible numerical instabilities depending on local pressure gradients (e. g. gap flow), small time steps necessary
 - Very large number of elements depending on geometry especially for unstructured meshes

(b)

Schwotzer, T.: "Simulation einer Drehkolbenpumpe mit der Immersed-Solid-Methode", Bachelorarbeit, Technische Universität Berlin, 2009

Methods for chamber modelling Mesh Deformation and Remeshing

- Advantages
 - Automatic mesh generation (less manpower required)
 - Fluid volume is represented by the mesh
 - Full model support (e.g. Multiphase with Cavitation, turbulence model)

Disadvantages

- Mesh-generation for almost each iteration (increasing computation time)
- Mesh generation leads to very high element numbers in gaps (increasing computation time)
- Mesh quality issues due to mesh deformation and element topology when using remeshing
- Numerical errors due to frequent interpolation of calculation results between different meshes

Methods for chamber modelling Manual Generation of Structured Hexahedral Meshes

ldea

 Manual grid generation in ANSYS ICEM CFD Hexa for many rotor positions per rotation

Advantages

- Best mesh and numerical quality
- High resolution of gaps is possible
- Element topology allows manageable model size
- No interpolation errors since the grid topology remains the same

Disadvantages

 Extremely high manual effort: grid generation for 2D-models would need 4 weeks

Fuchs, M.: "Numerische Simulation der instationären Strömung in einer Drehkolbenpumpe", Bachelorarbeit, Technische Universität Berlin, 2010

TwinMesh Seven steps from CAD to Mesh

• TwinMesh is a novel software, developed by CFX Berlin Software GmbH which generates high-quality hexahedral meshes for the rotating parts of axis parallel rotary positive displacement machines.

Simulation Workflow

ANSYS Conference & 32nd CADFEM Users' Meeting 2014, June 4 – 6, 2014, NCC Ost, Messe Nürnberg

TwinMesh 1. Geometry import

- File format (2D cross section of the machine)
 - IGES
 - CSV-File with point coordinates

TwinMesh 2. Boundary definition

- Boundary types
 - Rotor curvature
 - Casing curvature
 - Additional curvature for interface creation

TwinMesh 3. Geometric characteristics

TwinMesh 4. Interface generation

ANSYS Conference & 32nd CADFEM Users' Meeting 2014, June 4 - 6, 2014, NCC Ost, Messe Nürnberg

TwinMesh 5. Mesh properties

Details			
Bezeichnung	Wert		
Anzahl der Knoten	120		
Kurvenstart			
Knotenabstand [mm]	1		
Wachstumsfaktor	1.2		
Kurvenende			
Knotenabstand [mm]	1		
Wachstumsfaktor	1.2		

ANSYS Conference & 32nd CADFEM Users' Meeting 2014, June 4 - 6, 2014, NCC Ost, Messe Nürnberg

TwinMesh 6. Mesh generation and quality check

- Automatic mesh generation for each rotation angle
 - Smoothing algorithm depending on orthogonality and volume change
 - Different methods of mesh connection available (non-conforming or 1to1)
 - Visual and quantitative quality check tools available

TwinMesh 7. Mesh export

- Export
 - Mesh export to ANSYS CFX (format .cfx5) for the first rotor position
 - Export of mesh displacement coordinates for each rotor position
 - Including ANSYS CFX Session File for easy setup in ANSYS CFX

😓 Tutorial01_Step2.cbprj - Twir	nMesh	and the second	
Datei Hilfe			
Neues Projekt	211. 6		
Projekt öffnen	1 200	NetzNr (0.00°)	1 100
Projekt speichern			
Projekt speichern unter			
Import	Y		
Export			
Beenden			
	_		
180			
		11 - All Hand	
	· · · · · · · · · · · · · · · · · · ·		
Details			
Bezeichnung	Wert		
Geometrie			
Importeinheit	mm		
Maschinentyp	DK, SV, AZP 🔻		
Rotoranzahl	2		All Sile

Simulation results Lobe pumps

- Challenges
 - Incompressible fluids with cavitation (multiphase)
 - Non-newtonian fluids even with high viscosity

Simulation results Gear pumps

- Challenges
 - Complex rotor geometry
 - High pressure gradients
 - Incompressible fluids with cavitation
 - Non-newtonian fluids even with high viscosity

Simulation results Screw compressor

- Challenges
 - Highly screwed rotors
 - Compressible fluids
 - High flow velocities
 - Real-gas properties could be defined

- Simulation conditions
 - Rotational speed: 13000 rpm (male)
 - Air (Ideal Gas, constant properties)
 - 2 bar pressure difference
 - Axial gap not modeled

ANSYS Conference & 32nd CADFEM Users' Meeting 2014, June 4 - 6, 2014, NCC Ost, Messe Nürnberg

- General analyses (Torque, Power and massflow)
 - Power: 41.2 kW
 - Averaged volume flow: 890 m³/h

Simulation results Screw compressor

Simulation results Screw compressor

ANSYS Conference & 32nd CADFEM Users' Meeting 2014, June 4 - 6, 2014, NCC Ost, Messe Nürnberg

Summary

- There is now an efficient workflow for the simulation of rotary positive displacement machines with ANSYS CFD Software
- Key features of TwinMesh
 - Generation of high quality structured meshes with smoothing algorithm
 - Easy to use (comfortable GUI)
 - Works with ANSYS CFD
 - Works already for many different machine types
 - Works with gap sizes down to 1 μ m
 - Individual node distribution and rotation angle steps

Twin Mesh

CFX Berlin Software GmbH

ANSYS Conference & 32nd CADFEM Users' Meeting 2014, June 4 - 6, 2014, NCC Ost, Messe Nürnberg