

CFX Berlin Software GmbH Simulationskompetenz aus Berlin

© CFX Berlin Software GmbH | Tel.: +49 30 293 811 30 | E-Mail: info@cfx-berlin.de | www.cfx-berlin.de

CFX Berlin Software GmbH Simulationskompetenz aus Berlin

- CFX Berlin bietet seit 1997 als Partner von ANSYS, Inc. und CADFEM Lösungen und Simulationssoftware für:
 - Strömungsmechanik & Thermodynamik
 - Elektromagnetik
 - Strukturmechanik
- CFX Berlin-Geschäftsfelder:
 - ANSYS-Simulationssoftware
 - Berechnung & Optimierung
 - Beratung & Schulung
 - Forschung & Entwicklung

Dräger GEA Rexr

CFX Berlin Software GmbH Überblick I

BMW Group S

CFX **Berlin**

- Wie bieten Ihnen schlüsselfertige Simulationslösungen, bestehend aus:
 - ANSYS-Softwarelizenzen,
 - optimal abgestimmter Hardware,
 - individuellem Einarbeitungskonzept,
 - persönlichem Ansprechpartner für Support & Anwendungsberatung.
- Wir unterstützen Sie schon vorher mit:
 - Prozess- & Bedarfsanalyse, Lastenhefterstellung,
 - Entwicklung von optimalen Lösungen für Ihr Unternehmen,
 - Vorbereitung, Begleitung & Auswertung von Testinstallationen,

NORD-MICRO

Westinghouse

- Erarbeitung individuell abgestimmter Schulungsmaßnahmen.

signa

CFX Berlin Software GmbH Überblick II

- Wir unterstützen auch im Rahmen von Dienstleistungen:
 - Simulation & Validierung mit Qualitätsgarantie
 - Auslegung & Optimierung von strömungstechnischen Maschinen und Anlagen
 - Modell- & Softwareentwicklung
- Wir machen Forschung & Entwicklung
 - öffentlich geförderte F&E-Projekte
 - industriegeförderte Auftragsforschung
 - interne Projekte

Beispiel Schweißprozesssimulation: Schutzgasströmung mit Lichtbogen

nfineon

Beispiel Drehkolbenpumpe: Darstellung von Kavitation im Spalt

gleBurgmann.

Herausforderung:

Gekoppelte thermische, struktur- und strömungsmechanische Simulation eines Lamellenventils

Anwendungsbeispiele Simulation Simulation eines Lamellenventils mit ANSYS CFX und ANSYS Mechanical

- Inhalt der Arbeit: gekoppelte thermische, statische und strömungsmechanische, transiente Simulation des Öffnungs- und Schließvorgangs eines Lamellenventils
- Ziel ist die Bestimmung von:
 - zeitlichem Druckverlauf,
 - Temperaturverteilung,
 - mechanischen Spannungen,
 - Strömungsgeschwindigkeiten.

Lamellenventil der Firma HOERBIGER Kompressortechnik GmbH

Quelle: http://www.hoerbiger.com/

Anwendungsbeispiele Simulation Simulation eines Lamellenventils mit ANSYS CFX und ANSYS Mechanical

- Diese Präsentation basiert auf Ergebnissen der Masterarbeit von Markus Schildhauer.
- Weitere dort untersuchte Fälle:
 - Turek-FSI-Benchmark

Luftgedämpfte Plattenschwingung

Hochschule für Technik, Wirtschaft und Kultur Leipzig Fakultät Maschinen- und Energietechnik Studiengang Maschinenbau

Simulation von Fluid-Struktur-Interaktion mit ANSYS CFX

Masterarbeit Nr. 117/10

von

Markus Schildhauer, B.Eng. geb. am 24.02.1985 in Lutherstadt Wittenberg Matrikel-Nr.: 49020

Verantwortlicher Hochschullehrer: Prof. Dr.-Ing. Carsten Klöhn Betrieblicher Betreuer: Dr. rer. nat. Andreas Spille-Kohoff

Berlin, Oktober 2010 - März 2011

Berechnungsmodelle Geometrie

- Geometrieerstellung mit dem
 ANSYS DesignModeler
 - Halbmodell mit Symmetriebedingung
 - Das Geometriemodell beinhaltet sowohl das Strömungsvolumen als auch die Festkörper.
 - Festkörpergeometrie bestehend aus
 - Ventilplatte
 - Ventillamelle
 - Fänger
 - Strömungsvolumen bestehend aus
 - Druckraum
 - Verdichtungsraum
 - Verbindungsbereich

Ventilplatte

Berechnungsmodelle Rechengitter

Strömungsraum:

- Halbautomatische, blockstrukturierte Vernetzung mit ANSYS ICEM CFD Hexa
- 378 570 Knoten
- 357 592 Hexaederelemente

Festkörper:

- Automatische, unstrukturierte
 Vernetzung mit ANSYS Meshing -HexDominant
- 20-Knoten-SOLID-Elemente
- 8 343 Knoten
- 4 844 Hexaederelemente

Berechnungsmodelle Gitterbewegung

Modellierung der Gitterdeformation

- Lösung der Laplace-Gleichung
- Verschiebungen als Randbedingungen
- Ortsabhängige Gittersteifigkeit
- Ortsabhängige Gittersteifigkeit

$$\xi(\vec{x}) = C \cdot \left(\frac{1}{\alpha(\vec{x})}\right)$$

mit dem Wandabstand α als dreidimensionale Feldgröße

Berechnungsmodelle Fluid-Struktur-Interaktion

CFX Berlin

- ANSYS Workbench
 - Einfache Erzeugung von Analysesystemen durch "Drag and Drop"
 - Kopplung durch
 Verbindung der
 Analysesysteme
 Drag and Drop"
 - Automatische
 Übergabe und
 Interpolation von
 Kräften und
 Deformationen

Berechnungsmodelle ANSYS CFX

Lösertechnologie

- Finite-Volumen-Methode
- Algebraischer Mehrgitterlöser
- Massive Parallelisierung durch Partitionierung
- Umfangreiche Materialbibliothek
- Stationäre/Transiente Lösung
- Mehrphasenmodelle
 - Euler-Phase mit Oberflächenspannung
 - Polydisperse Phase
 - Lagrangesche Betrachtung
- Turbulenz
 - Statistische Turbulenzmodelle (RANS/URANS)
 - Grobstrukturmodelle (SAS/LES/DES)
 - Reynolds-Spannungs-Modelle
- Gitterdeformation
- Reaktionskinetik

laminare Grenzschicht (Re = 2·10⁴)

turbulente Grenzschicht (Re = $5 \cdot 10^5$)

Berechnungsmodelle ANSYS Strukturmechanik

Lösertechnologie

- Vorkonditionierter Konjungierte-Gradienten-Löser
- Direkte/Iterative-Löser
- Implizit/Explizit
- Parallelisierung durch CPU/GPU-Nutzung
- Umfangreiche Elementbibliothek
 - Lineare und quadratische Ansatzfunktionen
 - 1D-, 2D-, 3D-Elemente
- Nichtlinearität
 - Geometrische, physikalische und materialspezifische Nichtlinearität
 - Automatische Kontakterkennung, verschiedene Kontaktmodelle
- Materialmodelle mit Materialbibliothek
 - isotrop, anisotrop
 - plastisch, viskoeleastisch, hyperelastisch, ...

Prism Option

Berechnung Verwendete Modelle

Multiphysik

- Transient
- Zeitschritt: 10 μs
- Simulierter Zeitraum: 50 ms
- Übergabe von Kräften und Deformationen
- Strömungssimulation (CFD)
 - Material: Luft (Ideales Gas)
 - Transport der Totalenthalpie
 - SAS-Turbulenzmodell
 - Gitterdeformation mit Vorgabe der Kolbenbewegung im Verdichtungsraum
- Struktursimulation (CSM)
 - Material: Stahl (linearer Spannungs-Dehnungs-Zusammenhang)
 - Kontaktformulierung: Pure Penalty / Augmented Lagrange
 - Quadratische Ansatzfunktion

Berechnung Lösungskontrolle

- Konvergenzverhalten Strömungssimulation
 - MAX-Residuen < 10⁻²
 - Globale Bilanzen zu 1% erfüllt
- Konvergenzverhalten Struktursimulation
 - Kraftbilanz zu 1% erfüllt
- Konvergenzverhalten der Kopplungsgrößen
 - Bilanz der Kräfte und Verschiebungen am Interface zu 1% erfüllt

Berechnungsverlauf

- Arbeitsspeicher: 1.6 GB
- Anzahl Prozessoren: 2 (2.3 GHz)
- Berechnungsdauer: ca. 84 Stunden

•

Strömungsgeschwindigkeit im Übergang vom Verdichtungszum Druckraum

- Schnitt auf der Mittelebene
- Lamellenventil öffnet

Gemittelter Druck im Verdichtungs-(VR) und Druckraum (DR) sowie Massenstrom durch Ventilbohrung

Strömungsgeschwindigkeit im Übergang vom Verdichtungszum Druckraum

- Schnitt auf der Mittelebene
- Lamelle federt nach dem Anschlagen am Fänger zurück

Gemittelter Druck im Verdichtungs-(VR) und Druckraum (DR) sowie Massenstrom durch Ventilbohrung

- Strömungsgeschwindigkeit im Übergang vom Verdichtungszum Druckraum
 - Schnitt auf der Mittelebene
 - Lamelle bewegt sich nochmal in Richtung des Fängers

Gemittelter Druck im Verdichtungs-(VR) und Druckraum (DR) sowie Massenstrom durch Ventilbohrung

- Schnitt auf der Mittelebene
- Ende des Kompressionsvorgangs
- Lamelle schließt den Druckraum ab

Gemittelter Druck im Verdichtungs-(VR) und Druckraum (DR) sowie Massenstrom durch Ventilbohrung

•

[C]

•

[C]

•

Stromlinienverlauf

- Eingefärbt mit Strömungsgeschwindigkeit
- Lamellenventil öffnet

Stromlinienverlauf

- Eingefärbt mit Strömungsgeschwindigkeit
- Lamellenventil öffnet

Stromlinienverlauf

- Eingefärbt mit Strömungsgeschwindigkeit
- Lamelle federt nach dem Anschlagen am Fänger zurück

Stromlinienverlauf

- Eingefärbt mit Strömungsgeschwindigkeit
- Lamelle bewegt sich nochmal in Richtung des Fängers

Stromlinienverlauf

- Eingefärbt mit Strömungsgeschwindigkeit
- Lamelle bewegt sich nochmal in Richtung des Fängers

Stromlinienverlauf

- Eingefärbt mit Strömungsgeschwindigkeit
- Lamelle schließt den Druckraum ab

Zusammenfassung

FSI-Simulation eines Lamellenventils

- strukturmechanischer Teil mit ANSYS Mechanical
- strömungsmechanischer Teil mit ANSYS CFX
- Kopplung durch "Drag and Drop" in der

ANSYS Workbench

Transiente Berechnung von

- Druckaufbau durch Kolbenbewegung
- Bewegung des Lamellenventils mit dynamischen Kontakten
- Strömung und Temperaturverteilung im Strömungsraum
- Spannungen in Ventillamelle und Fänger

Modellerweiterung

- Durch Betrachtung des vollen Modells (ohne Symmetrie) können asymmetrische Effekte (Verwirbelung hinter der Ventillamelle, fertigungsbedingte verschiedene Spaltmaße) und deren Effekte auf die Lamellenbewegung (kein konstantes Abheben, Torsionsbewegung) berücksichtigt werden.
- Die Temperatureinflüsse auf die Struktur des Ventils wurden vernachlässigt, können aber ohne größeren Aufwand berücksichtigt werden.
- Die Verwendung eines feineren Gitters und höherer Turbulenzmodelle kann kleinskaligere Wirbelstrukturen abbilden.
- Die transiente mechanische und thermische Belastung der Ventillamelle kann f
 ür Materialerm
 üdungssimulationen genutzt werden, um Erm
 üdungsrisse oder Erm
 üdungsbruch vorherzusagen.

CFX Berlin Software GmbH

