Technische Universität Berlin

Fakultät V Verkehrs- und Maschinensysteme Institut für Strömungsmechanik und Technische Akustik Fachgebiet Fluidsystemdynamik - Strömungstechnik in Maschinen und Anlagen

CFX Berlin Software GmbH

Mainzer Strasse 23 10247 Berlin

BACHELORARBEIT

Numerische Simulation der instationären Strömung in einer Drehkolbenpumpe

Marian Fuchs

Verfasser:Marian Fuchs
Matrikel-Nr. 310002Studiengang:Physikalische Ingenieurwissenschaft
Studienschwerpunkt: StrömungsmechanikE-Mail-Adresse:marian.fuchs@cfd.tu-berlin.deeingereicht am:26. März 2010Betreuer:Prof. Dr.-Ing. Paul-Uwe Thamsen (Technische Universität Berlin)
Dipl.-Ing Sebastian Wulff (Technische Universität Berlin)
Dr. rer. nat. Andreas Spille-Kohoff (CFX Berlin Software GmbH)

Inhaltsverzeichnis

Abbildungsverzeichnis			VIII		
Та	beller	werzeichnis	X		
Nomenklatur Z Abkürzungsverzeichnis					
					1
	1.1	Einführung	3		
	1.2	Motivation der Arbeit	4		
	1.3	Gliederung der Arbeit	4		
	1.4	Ziel der Arbeit	5		
	1.5	Stand der Technik	6		
	1.6	Fehlerquellen einer CFD-Simulation	7		
		1.6.1 Modellfehler	7		
		1.6.2 Diskretisierungsfehler	7		
		1.6.3 Abbruchfehler	7		
		1.6.4 Rundungsfehler	7		
2	Tech	nische und theoretische Grundlagen	8		
	2.1	Aufbau und Funktionsweise der Drehkolbenpumpe	8		
	2.2	Geometrische Vereinfachung	15		
	2.3	Physikalische Annahmen	16		
	2.4	Turbulenzmodellierung	17		
		2.4.1 Das SST-Modell	18		
	2.5	Arbeitsablauf einer CFD-Simulation	19		
	2.6	Bewegte Berechnungsgitter - Moving Mesh	21		
	2.7	Verbindung zwischen Rechendomains - GGI Interface	23		
	2.8	Lösungsalgorithmus in CFX 12.0	27		
3	Simu	ılationsergebnisse für die Referenzkonfiguration	29		
	3.1	Berechnungsgitter	30		
	3.2	Simulationseinstellungen	33		
	3.3	Lösungsverlauf	35		
	3.4	Simulationsauswertung	36		
4	Einflussfaktoren auf die numerische Lösung				
	4.1	Qualitätskriterien guter Rechengitter für den Kolbenbereich	44		
	4.2	Geometrische Lage des Interfaces	47		
	4.3	Gitterauflösung am Interface	49		
	4.4	Massenerhaltung am Interface	52		
	4.5	Bildung asymmetrischer Strömungsstrukturen	54		
5	Aufv	vandseinschätzung für ein 3D-Modell	55		
6	Aust	blick	59		
A	Strö	mungsmechanische Grundgleichungen	61		
	A.1	Kontinuitätsgleichung	61		
	A.2	Impulserhaltungsgleichung	61		

B	Turbulenzmodelle	62	
	B.1 RANSE - Zweigleichungsmodelle	62	
	B.1.1 SST - Shear Stress Transport	62	
С	Simulationseinstellungen Referenzkonfiguration	63	
	C.1 Numerische Einstellungen	63	
	C.2 Theoretischer Volumenstrom	64	
D	Simulationsergebnisse Referenzkonfiguration	65	
E	Gitterqualität	65	
Lit	Literatur		

Abbildungsverzeichnis

1	Berechnungsgitter (oben) und Visualisierung des Druckfeldes (unten) in einer Außen-	
	zahnradpumpe [1]	6
2	Berechnungsgitter (oben) und Visualisierung des Druckfeldes (unten) in einer Innen-	
	zahnradpumpe [1]	6
3	Drehkolbenpumpe - Einführung	8
4	Explosionsdarstellung einer 3-flügeligen Drehkolbenpumpe	9
5	Förderbetrieb einer Drehkolbenpumpe, Visualisierung der Strömungsstruktur mit Hilfe	
	einer Konvektionsgleichung	10
6	Kennziffern für den Betrieb von Drehkolbenpumpen	11
7	Kennlinien für den Betrieb von Drehkolbenpumpen	13
8	Pulsationsfreie Förderung durch sphärisch verwundene HiFlo-Kolben	14
9	Geometrische Abmessungen und charakteristische Größen des zweidimensionalen Be-	
	rechnungsmodell	15
10	Förderstromänderung einer 4-flügeligen Pumpe im Vergleich zu einem 3-flügeligen	
	Modell für verschiedene Dichtspalte (Kopfspalte) [2]	16
11	Turbulenzmodellierung, instationäre RANS-SST (oben), Skalen-angepasste SAS-SST	
	(unten), bessere Auflösung turbulenter Strukturen bei größerem Rechenbedarf	17
12	Stromlinien für die Strömung durch einen ebenen Diffusor für beide Modelle. Das SST-	
	Modell bestimmt die Größe des Rezirkulationsgebietes in guter Übereinstimmung mit	
	den Messwerten, im Gegensatz dazu schafft es das $k - \varepsilon$ -Modell nicht, die physikali-	
	schen Vorgänge abzubilden [3]	18
13	CFD-Simulation: Arbeitsablauf	19
14	Starke Deformation des Berechnungsgitters bei der Simulation eines Drosselventils [4]	21
15	Notwendigkeit der Verwendung bewegter Rechengitter bei der Drehkolbenpumpensi-	
	mulation	22
16	General Grid Interface [GGI] in ANSYS CFX 12.0	23
17	General Grid Interface - Diskretisierung	24
18	General Grid Interface - Diskretisierung der Flüsse über das Interface	25
19	General Grid Interface - Intersection Control - Bedingung für nicht-überlappende Flächen	26
20	Algebraisches Mehrgitterverfahren in ANSYS CFX 12.0	27
21	Kennlinie Drehkolbenpumpe, Wahl des Arbeitspunktes	29
22	Blockstruktur des Berechnungsgitters für den Kolbenbereich der Pumpe	30

Zusammenfassung

Nach mehr als 20 Jahren Entwicklungszeit sind kommerzielle CFD-Softwarepakete wie ANSYS CFX heutzutage in der Lage, selbst für komplizierte Strömungsprobleme numerische Lösungen zu generieren. Die Komplexität bezieht sich dabei sowohl auf die geometrische Situation als auch die physikalischen Strömungsbedingungen.

Im Rahmen dieser Arbeit wurde die instationäre Strömung in einer Drehkolbenpumpe mit Hilfe der momentan in der numerischen Strömungsmechanik vorhandenen Diskretisierungsmodelle untersucht. Es wird ein Überblick über den aktuellen Stand der Forschung sowie die für die Simulation von positiven Verdrängermaschinen notwendigen theoretischen und numerischen Grundlagen gegeben. Anhand eines zweidimensionalen Modells der Drehkolbenpumpe werden die Einflussfaktoren auf die numerische Lösung aufgezeigt und mit einer Referenzkonfiguration verglichen. Dabei bilden die Reynoldsgemittelten Navier-Stokes-Gleichungen die Grundlage für die Modellierung der turbulenten Strukturen in der Strömung. Die Ergebnisse werden für das zurzeit industriell relevanteste RANSE-Modell präsentiert, dem SST-Modell. Für die Abbildung des sich zeitlich verändernden Strömungsvolumens wird die Methode bewegter Berechnungsgitter (Moving Mesh) vorgestellt und diskutiert. Anhand der präsentierten Ergebnisse wird gezeigt, dass die komplexe und zeitaufwendige Gittererstellung momentan das signifikanteste Problem bei der Simulation der Drehkolbenpumpe darstellt. Die aus der Simulation des zweidimensionalen Modells gewonnenen Erkenntnisse werden genutzt, um eine Aufwandseinschätzung für die Simulation eines dreidimensionalen Pumpenmodells zu liefern. Abschließend wird ein Ausblick auf kommende Entwicklungen im Bereich der CFD-Pumpensimulation gegeben.