Optimized Design of Electrochemical Machining Processes by CFD Simulation

Dr. Andreas Spille-Kohoff
Benoit Bosc-Bierne

CFX Berlin Software GmbH
Content

- What is Electrochemical Machining?
- Overview on research project SIREKA
- CFD simulation of ECM
- Summary and outlook
What is Electrochemical Machining (ECM)?

Removal of metal by electrochemical process:
- Electric potential between work piece (anode) and cutting tool (cathode) with electrolyte between
- During metal removal, cutting tool is advanced into workpiece with small gap between (50 to 500 µm)
- "reverse electroplating"

Advantages:
- No direct contact, no stress, no tool wear
- Hard materials can be machined

Disadvantages:
- High energy consumption, slow process
- Only electrically conductive materials
What is Electrochemical Machining (ECM)?

- Complex physics
 - electric potential and electric current
 - metal dissolution and heat generation
 - material and heat transport due to electrolyte flow
 - geometry deformation
- Even more complex processes:
 - different processes for rough and fine machining
 - Pulsed Electrochemical Machining (PECM): pulsed current and/or oscillating working gap
- Main challenge:
 - How should the tool look like to get desired removal shape in the workpiece?
Research project SIREKA

Project partners

Associated partners:

- BOSCH Diesel Systems
- P&G Braun

34. CADFEM ANSYS Simulation Conference
October 5 – 7, 2016, NCC Ost, Messe Nürnberg
Research project SIREKA
Overview

- **Name:** SIREKA
 Simulationsunterstützte ressourceneffiziente Auslegung und Realisierung des Elektrochemischen Abtragens
- **Duration:**
 1.4.2015-31.3.2017
- **Research program:**
 KMU-innovativ
- **Executing organization:**
 Projektträger Karlsruhe Produktion und Fertigungstechnologien
- **Funded by:**
 German Federal Ministry of Education and Research

Diagram:
- Production order
 - Conception
 - EC-removal + machine
 - Construction
 - device + cathode
 - Manufacturing
 - device + cathode
 - Experimental
 - realization
 - Evaluation
 - Removal
 - geometry

Approaches:
- **Empirical approach**
 - Process adjustment
 - Removal characterization
 - Simulation
 - Rapid prototyping

Numerical approach
Research project SIREKA

Aims

- **Optimized design process for electrochemical machining (ECM):**
 - Empirical approach of construction, manufacturing, experiment and adjustment too inefficient
 - Improvement of design process through **3D simulations** of ECM
 - Simulations based on experimentally determined dissolving **material characteristics**
 - Optimization of process parameters and device shape
 - Speed-up of manufacturing through **rapid prototyping** of cathodes with Fused Deposition Modeling (FDM) or PolyJet technology, coated with metallic layer
Content

• What is Electrochemical Machining?

• Overview on research project SIREKA

• CFD simulation of ECM
 – Setup and boundary conditions
 – Verification cases
 – Validation cases

• Summary and outlook
Typical geometry for an ECM process:

- **workpiece**
 - of steel, often initially flat

- **flushing chamber**
 - for electrolyte

- **cathode**
 - of steel, copper, galvanized plastic with complex geometry
 - verification shapes on cylinder:
 - half sphere
 - cone
 - cuboid
 - part of retarder geometry
Boundary conditions for an ECM process:

- **Anode at voltage**
 - e.g. 7 V (already reduced by polarization voltage)
- **Cathode grounded**
 - 0 V
Boundary conditions for an ECM process:

- Anode at voltage
 - e.g. 7 V (already reduced by polarization voltage)

- Cathode grounded
 - 0 V

- Specified feed rate
 - e.g. 0.35 mm/min

- Process time or sinking depth
 - e.g. 10 min → 3.5 mm

\[\text{0.35 mm/min} = 5.83 \, \text{µm/s} \]
Boundary conditions for an ECM process:

- **Anode at voltage**
 - e.g. 7 V (already reduced by polarization voltage)
- **Cathode grounded**
 - 0 V
- **Specified feed rate**
 - e.g. 0.35 mm/min
- **Process time or sinking depth**
 - e.g. 10 min ➔ 3.5 mm
- **Dissolution rate of metal at anode**
 - experimentally determined: local removal velocity v_a as function of local current density J

<table>
<thead>
<tr>
<th>Bereich</th>
<th>J in [A/cm²]</th>
<th>$\Delta v_a/\Delta J$ in [mm/min / A/cm²]</th>
<th>v_0 in [mm/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>8 – 74</td>
<td>0,0106</td>
<td>-0,063</td>
</tr>
<tr>
<td>II</td>
<td>45 – 107</td>
<td>0,0116</td>
<td>-0,032</td>
</tr>
</tbody>
</table>
Setup for an ECM simulation:

- Simulation with ANSYS CFX
 - transient with time step size of e.g. 1 s
 - initialized with steady-state solution
 - duration of 10 min = 600 s
- Geometry deformation:
 - prescribed feed rate in fixed direction
 - metal dissolution $v_a(J)\Delta t$ in normal direction at anode-fluid interface
 - net motion via User Fortran at boundaries
- Equations solved for:
 - boundary scale / wall distance
 - mesh deformation (for inner vertices)
 - electric potential
 - NO fluid flow, NO turbulence, NO heat transfer
- Problem: Deformed mesh becomes invalid!
CFD simulation of ECM
Setup and boundary conditions

Program
- Perl-Script
 - ANSYS CFX-Solver*
 - ANSYS CFD-Post
 - ANSYS ICEM CFD
 - ANSYS CFX-Pre
 - ANSYS CFX-Solver*

Data transfer
- Result file
 - STL file
 - Mesh file
 - Definition file

User files
- Definition file
 - Session file
 - Geometry file
 - Replay script
 - CFX file
 - Session file

Iterations until full run-time duration is reached

* Stop if mesh quality is bad

34. CADFEM ANSYS Simulation Conference
October 5 – 7, 2016, NCC Ost, Messe Nürnberg
CFD simulation of ECM
Verification case: Half sphere
CFD simulation of ECM
Verification case: Half sphere

Stromdichte in A/cm²

Time = 0 [s]

34. CADFEM ANSYS Simulation Conference
October 5 – 7, 2016, NCC Ost, Messe Nürnberg
CFD simulation of ECM
Verification case: Half sphere

34. CADFEM ANSYS Simulation Conference
October 5 – 7, 2016, NCC Ost, Messe Nürnberg
CFD simulation of ECM
Verification case: Half sphere

Stromdichte in A / cm²

Time = 300 [s]

Stromdichte in A / cm²

Time = 600 [s]

cia. 118 µm distance

34. CADFEM ANSYS Simulation Conference
October 5 – 7, 2016, NCC Ost, Messe Nürnberg
CFD simulation of ECM
Verification case: Truncated cone
CFD simulation of ECM
Verification case: Cuboid
CFD simulation of ECM
Verification case: Part of Retarder geometry
CFD simulation of ECM
Verification case: Final shapes

34. CADFEM ANSYS Simulation Conference
October 5 – 7, 2016, NCC Ost, Messe Nürnberg
Micro-Calotte validation case:

- Cathode with 97 identical cavities
- 6 different process parameter sets
 - voltage and feed rate values
Micro-Calotte validation case:

- Cathode with 97 identical cavities
- 6 different process parameter sets
 - voltage and feed rate values
- Simulation of one cavity:
 - cylindrical part of anode, electrolyte and cathode with 1 mm diameter
 - initial distance of electrodes: 50 µm
 - cavity depth: 94 µm
CFD simulation of ECM
Validation case: Micro-Calotte

Micro-Calotte validation case:

- Cathode with 97 identical cavities
- 6 different process parameter sets
 - voltage and feed rate values
- Simulation of one cavity:
 - cylindrical part of anode, electrolyte and cathode with 1 mm diameter
 - initial distance of electrodes: 50 µm
 - cavity depth: 94 µm
 - meshed with tetras/prisms
Micro-Calotte validation case:

- Cathode with 97 identical cavities
- 6 different process parameter sets
 - voltage and feed rate values
- Simulation of one cavity:
 - cylindrical part of anode, electrolyte and cathode with 1 mm diameter
 - initial distance of electrodes: 50 µm
 - cavity depth: 94 µm
 - meshed with tetras/prisms
 - good resolution of 50 µm gap
CFD simulation of ECM
Validation case: Micro-Calotte

30 A/cm², 0,048 mm/min

t = 314 s

delta Z in µm
53.63
47.05
40.48
33.91
27.33
CFD simulation of ECM
Validation case: Micro-Calotte

Initial position

Final bump position

Cathode shape

VV1: 100 A/cm², 0.222 mm/min
VV2: 90 A/cm², 0.199 mm/min
VV3: 70 A/cm², 0.153 mm/min
VV4: 50 A/cm², 0.107 mm/min
VV5: 30 A/cm², 0.048 mm/min
VV6: 10 A/cm², 0.008 mm/min

34. CADFEM ANSYS Simulation Conference
October 5 – 7, 2016, NCC Ost, Messe Nürnberg
Final bump shape in simulation compared to experiment:

- good quantitative agreement
- trend not captured correctly
- asymmetry in experiment due to fluid flow
Macro-sphere validation case:

- **Cathode as half-sphere**
 - with radius 20 mm
 - and boring of radius 3 mm

- **Anode:**
 - initially flat with boring of radius 5 mm

- **ECM process:**
 - approx. 300 µm gap size
 - 6 mm sinking depth
 - two steps for rough and fine machining
Macro-sphere validation case:

- Cathode as half-sphere
 - with radius 20 mm
 - and boring of radius 3 mm
- Anode:
 - initially flat with boring of radius 5 mm
- ECM process:
 - approx. 300 µm gap size
 - 6 mm sinking depth
 - two steps for rough and fine machining
- ECM simulation:
 - Simplified cathode shape
Geometry for an ECM process:

- workpiece
 - of steel
- flushing chamber
 - for electrolyte with through-flushing and outlets at sides
- cathode
 - complex geometry with sharp edges and copper coating
Geometry for an ECM process:

- **workpiece**
 - of steel

- **flushing chamber**
 - for electrolyte with through-flushing and outlets at sides

- **cathode**
 - complex geometry with sharp edges and copper coating
 - consists of three parts:
 - adapter plate (stainless steel)
 - base body from Fused Deposition Modeling (plastic) with copper coating
 - insulation body from FDM (plastic)
• Research project SIREKA to optimise the ECM design process:
 – Experimentally determined dissolving material characteristics
 – Numerical 3D simulation of ECM process with validation cases
 – Rapid prototyping with Fused Deposition Modeling and selective copper coating

• Simulations of ECM process with ANSYS CFX:
 – Solution for electric potential and mesh deformation only
 – Script-based solution workflow with remeshing
 – Applied on verification and validation cases

• Next steps:
 – Validation on micro and macro geometry and retarder
 – Optimisation of process parameters and/or cathode shapes
 – Export of optimised cathode shape towards rapid prototyping → validation

➢ Extension to fully coupled system for ECM processes including electrolyte flow and material and heat transport