

CFD-Simulation thermoakustischer Resonanzeffekte zur Bestimmung der Flammentransferfunktion

Autor: Dennis Paschke
Technische Universität Berlin
Institut für Strömungsmechanik und
Technische Akustik

FG Experimentelle Strömungsmechanik

Co-Autor: Andreas Spille-Kohoff
CFX Berlin Software GmbH

Karl-Marx-Allee 90 A

10243 Berlin

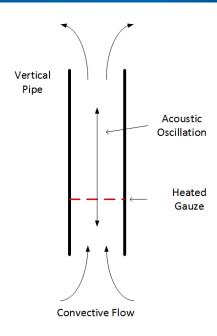
Master Thesis

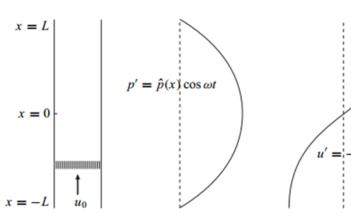
- Master Thesis at Technische Universität Berlin
 - Supervision by the "Fachgebiet für Experimentelle Strömungsmechanik"
 - Investigation of thermoacoustics in combustion systems by Jun.-Prof. Dr. J.
 P. Moeck
 - Determine Flame Transfer Functions (FTF) amongst other things
- Content of the Master Thesis
 - "Determination of Heat Transfer Functions with 3D CFD and their application on 1D CFD"
 - Simulation of thermoacoustics in a Rijke Tube with ANSYS CFX
 - Finding a model to represent the effects of heated wires in a fluctuating flow
 - Determination of a simple mathematical model
 - Simulate a Transfer Function for the heated wires, from the idea of FTFs
- Thesis was written in cooperation with CFX Berlin

The Rijke Tube

Singing Tube (19th century)

- Pipe with a compact heat source in it which generates an audible sound
- Heat source inducts convective flow followed by an acoustic disturbance
- Reflection at the pipe ends leads to an acoustic oscillation
- Acoustics disturbs heat source, fluctuating heat source disturbs acoustics again
- Feedback loop
- Standing wave at the pipes resonance frequency self excites
- 0.4 m long pipe ~ 500 Hz
- ⇒ Thermoacoustic resonator



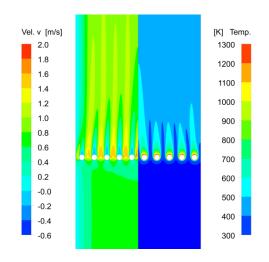


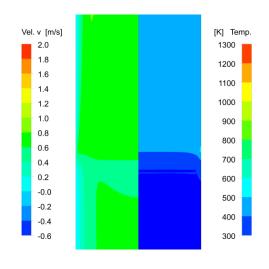
 $\mathrm{d}\hat{p} \sin \omega t$

Motivation

- Reduction of the simulation time of thermoacoustics
 - Simulation of thermoacoustic effects could replace cost intensive experiments
 - Reduce complex 3D physical problem into 1D mathematical model
 - Modeling the heat release rate in a fluctuating stream
 - ⇒ No wires needed to be simulated
 - ⇒ Lesser mesh elements needed

⇒ Less computational power needed



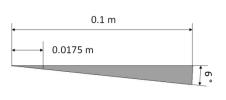


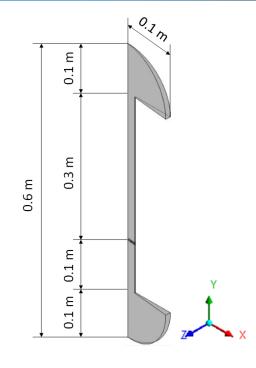
Rijke Tube in ANSYS CFX

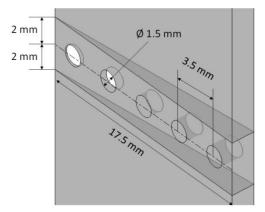
Geometry

- A section of 6° of a vertical pipe
- Length: 0.4 m, Diameter: 0.035 m
- Ambient volumes at the top and bottom with a radius of 0.1 m
- 5 heated wires at ¼ of the pipe length with a diam. of 1.5 mm

- Compressible air from ANSYS CFX database
- Heat transfer model: Total energy
- Turbulence model: (none) laminar
- Buoyancy model
 - Buoyant
 - Gravity Y Dirn.: -g
 - Ref. density: $\rho_{ref} = P_{ref} \cdot \frac{M_{air}}{R \cdot T_{ref}}$







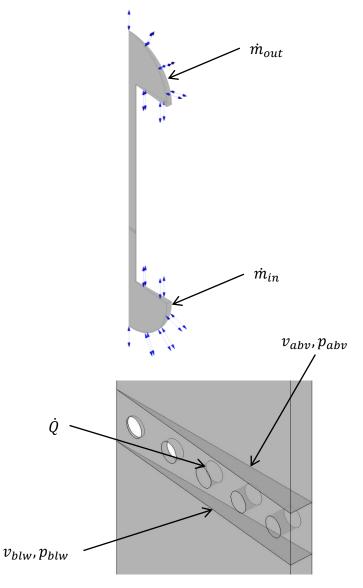
Rijke Tube ANSYS CFX

Boundary conditions

- Pipe wall: Default "no slip" Wall
- Symmetry planes: Symmetry condition
- Ambient volumes surfaces: Opening condition
 - At ambient pressure: 1 atm
 - Opening temperature: 300 K
- Wires surfaces
 - "No slip" Wall
 - Fixed temperature: 1300 K, 1800K and 2300 K

Solver setup

- Default settings
- MAX residual $< 10^{-4}$



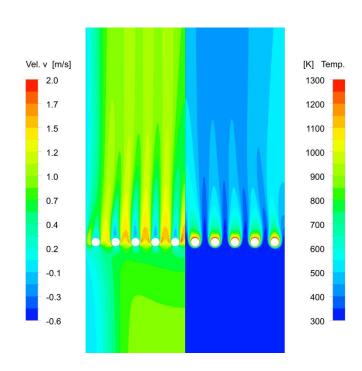
Simulating the Rijke Tube

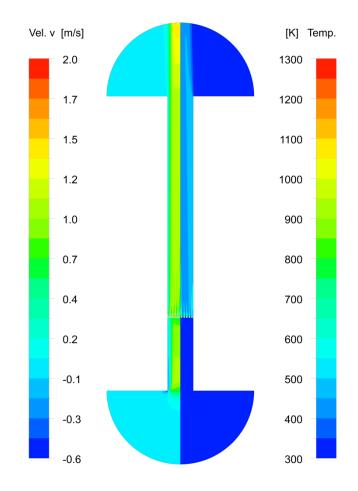
• Steady-state simulation with 1300 K wire temperature

- Velocity: $v_{blw} \approx 0.5 \text{ m/s}, v_{abv} \approx 0.75 \text{ m/s}$

- Temperature: $T_{blw} = 300 \text{ K}$, $T_{abv} \approx 464 \text{ K}$

- Mass flow rate: $\dot{m} \approx 9.25 \cdot 10^{-6} \text{ kg/s}$





Transient Setup in ANSYS CFX

Solver Setup

Default settings

Coefficient Loops: min. 2, max.15

Max Residual: 10⁻³

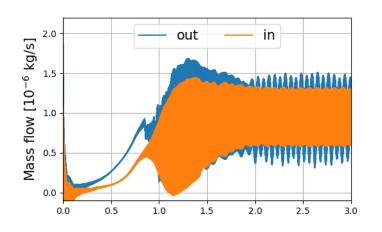
Calculation of the time step size

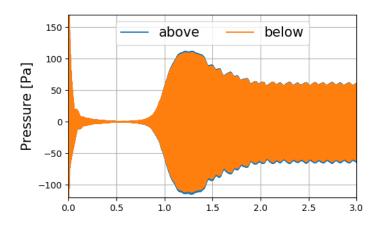
- Resonance frequency f_1 was calculated considering the temperature jump through the heat source beforehand
- $\Delta t = \frac{1}{f_1} \cdot \frac{1}{50}$
- $-\Delta t = 38 \,\mu s$ for all simulations

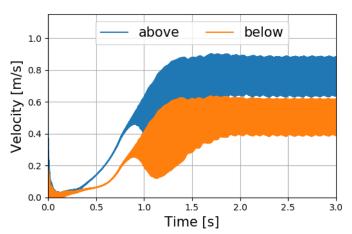
Parameter	Value				Unit
ΔT	300	1000	1500	2000	K
f_1	434	489	511	529	Hz
Δt	-	46	41	38	μs

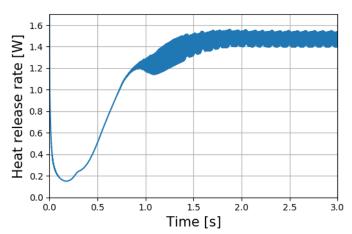
Transient Simulation of the Rijke Tube

Start from Ambient Conditions with 1300 K wire temperature





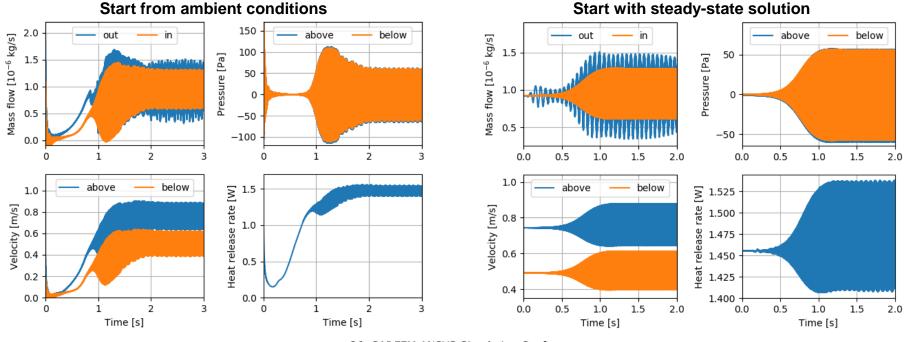




Transient Simulation of the Rijke Tube

Start from steady-state solution

- Wire temperature of 1300 K
- Oscillation starts immediately
- Limit cycle is reached 1 s earlier
- ANSYS CFX can represent thermoacoustic oscillations
- 3 s simulated time ⇒ 3 day real time at 4 CPU Cores

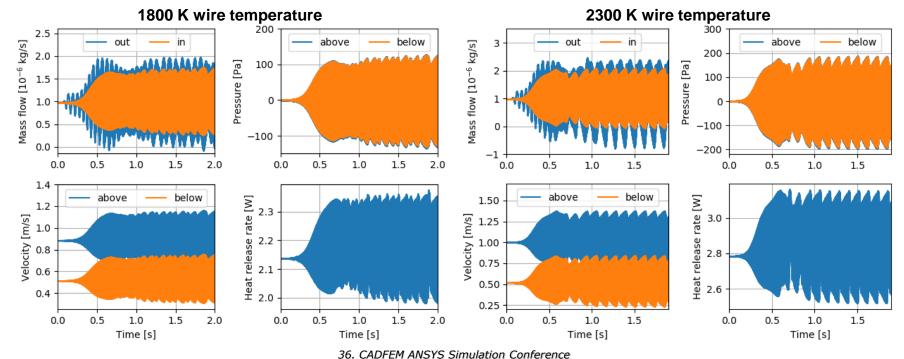


Transient Simulation of the Rijke Tube

Also instable at higher temperatures

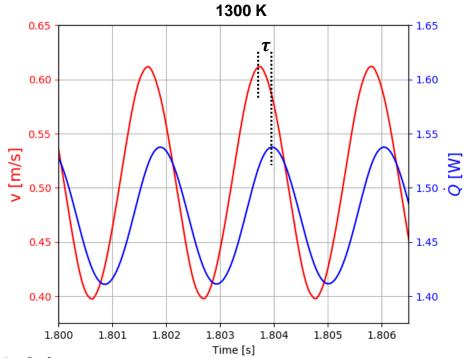
- Higher mean flow velocities and heat release rates
- Higher amplitudes
- Limit cycle is formed faster
- Enough energy input to stimulate more frequencies

Temp.	1st harm.		
1000 K	482 Hz		
1500 K	501 Hz		
2300 K	516 Hz		



A Simple Heat Transfer Approximation

- Reduce a complex 3D instability effect to an approximated 1D mathematical context
 - Context: $\dot{Q}(t) \sim v(t)$
 - $\dot{Q}(t)$ is the heat release rate over the wires
 - v(t) is the velocity straight before the wires in pipe-axis direction
 - Decomposition of \dot{Q} : $\dot{Q}(t) = \overline{\dot{Q}}(t) + \dot{Q}'(t)$
 - Decomposition of $v: v(t) = \overline{v}(t) + v'(t)$
 - $\overline{\dot{Q}}(t) \sim \overline{v}(t)$
 - $\dot{Q}'(t) \sim v'(t-\tau)$
 - τ time delay between \dot{Q}' and v'
 - Model: $\dot{Q}(t) = F1 \cdot \overline{v}(t) + F2 \cdot v'(t-\tau)$
 - $F1 = \frac{\overline{\dot{Q}}}{\overline{v}}$
 - $F2 = \frac{\dot{Q}'}{v'}$



F1, F2 and τ Determination

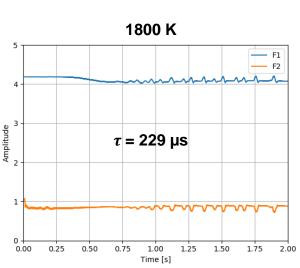
Time development was observed

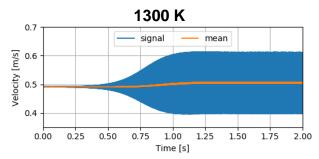
- Stable mean at the beginning (low amplitudes of v' and \dot{Q}')
- Small change when fluctuation amplitudes grow bigger, due to a mean shift of \dot{Q}
- Stable mean at the limit cycle

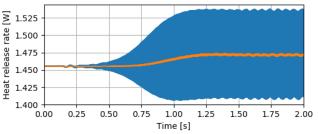
F2

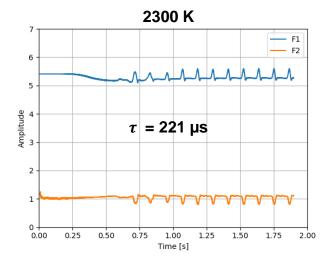
1.75

- F1 and F2 are calculated by taking the mean at limit cycle part
- au is calculated via phase angle between v' and \dot{Q}'









0.50

0.75

0.25

1.0

1300 K

 $\tau = 244 \, \mu s$

Time [s]

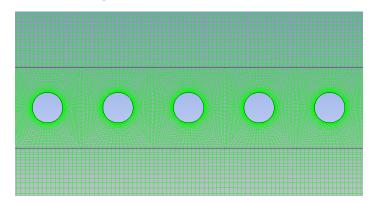
1.25

1.50

ANSYS CFX Model without Wires

Wires are replaced by Subdomain

- Isotropic Loss Model with K_{Loss} set (flow resistance through wires)
- Total heat source term activated
- Source: $\dot{Q}(t) = F1 \cdot \overline{v}_{blw}(t) + F2 \cdot v'_{blw}(t-\tau)$
- $-v_{hlw}$ area average at plane below the wires
- Source defined via User Fortran routine

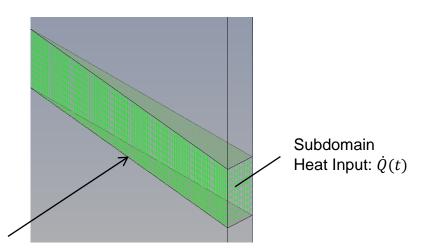


User Fortran Routine

- Routine stores v_{blw} for 20 periods
- Calculates $\overline{v}_{blw},\, {v'}_{blw},\, \overline{\dot{Q}}$ and \dot{Q}'
- Returns: $\dot{Q}(t) = \overline{\dot{Q}} + \dot{Q}'$

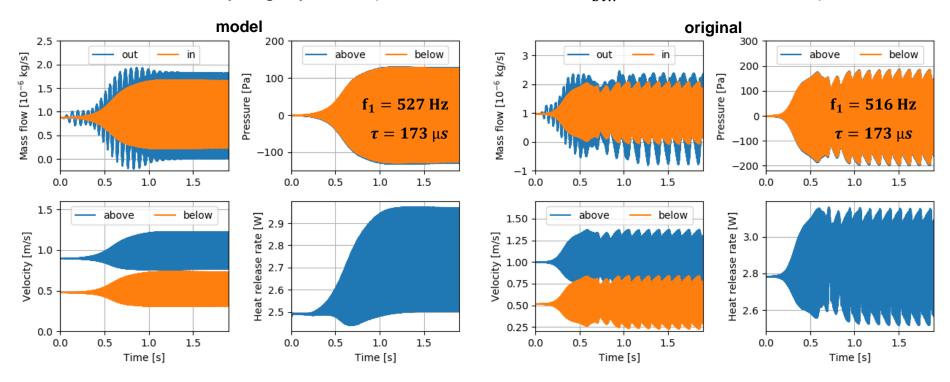
$$\Rightarrow \dot{Q}(t) = F1 \cdot \overline{v}_{blw}(t) + F2 \cdot v'_{blw}(t - \tau)$$

 $areaAve(v_{blw}(t))$



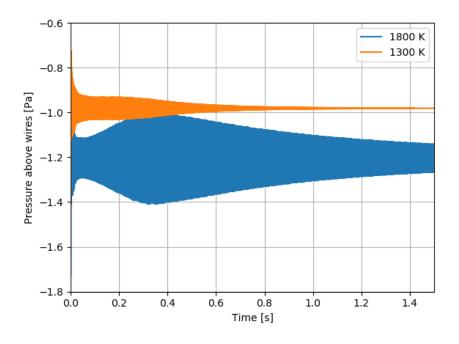
Simulation with Approximated \dot{Q}

- Model for 2300 K wire temperature works in the expected range
 - Oscillation amplitudes are slightly weaker (1. mode)
 - Resonance frequency is slightly higher
 - Time until limit cycle has formed is longer (different start solutions)
 - Phase delay slightly lower (no distance between v_{hlw} and \dot{Q} in Subdomain)



Simulation with Approximated \dot{Q}

- Models for 1300 K and 1800 K don't work properly
 - Don't self excite ⇒ No limit cycle
 - Variation of different flow/script parameters doesn't change the problem
 - Model only works for one specific setup
 - The simple model is too simple
 - ⇒ A change in the mathematical model is needed



Change in the Mathematical Model

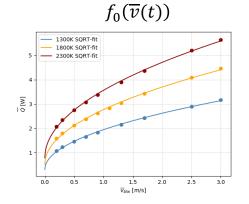
Unregarded properties of thermoacoustic systems

- Delay between \dot{Q}' and v' is frequency dependent: $\tau(\omega)$
- Flames or heated wires have a low pass behavior
- ⇒ Can be represented by a Transfer Function

New model

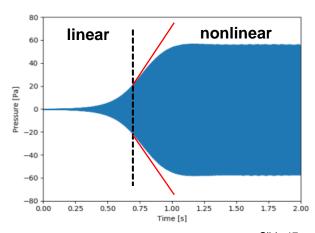
- New function $f_0(\overline{v}(t)) = \alpha + \beta \sqrt{\overline{v}(t)}$ for $\overline{\dot{Q}}$
- Model for a Heat Transfer Function $HTF(v'(\omega))$ for \dot{Q}'

$$- \Rightarrow \dot{Q}(t) = f_0(\overline{v}(t)) + HTF(v'(\omega))$$



Restriction of Transfer Functions

- Valid for linear time-invariant systems
- Only for low amplitudes
- Transfer functions have no saturation mechanism.



HTF Model

- Simulating a Transfer Function for the wires
 - Frequency dependent simulations
 - Called Heat Transfer Function (HTF)
- Calculation of a State Space model (SSM)
 - Representation of the HTF in time domain
 - 6 dimensional state vectors
- Implicit model via User Fortran routine
- Expansion to Advanced SSM (ASSM)
 - Amplitude dependent simulations
 - Leads to an additional nonlinear function

$$- \mathcal{N}\left(\frac{u'(t)}{\overline{u}}\right) = 1 + \gamma_1\left(\frac{u'(t)}{\overline{u}}\right) + \gamma_2\left(\frac{u'(t)}{\overline{u}}\right)^2$$

$$HTF(i\omega) = \frac{\dot{Q}'(\omega)}{u'(\omega)} e^{-i\varphi} \cdot \frac{\overline{u}}{\bar{Q}}$$

$$\begin{cases} \dot{\underline{x}}(t) = A\underline{x}(t) + B\frac{u'(t)}{\overline{u}} \\ \frac{q'(t)}{\overline{q}} = C\underline{x}(t) \end{cases}$$

$$\begin{cases} x^{n+1} = x^n + \Delta t \left[A \cdot x^{n+1} + B \cdot \frac{u'^{n+1}}{\overline{u}} \right] \\ \frac{\dot{Q'}^{n+1}}{\overline{\dot{Q}}} = C \cdot \underline{x}^{n+1} \end{cases}$$

$$\begin{cases} \underline{\dot{x}}(t) = A\underline{x}(t) + B\frac{u'(t)}{\overline{u}} \\ \frac{\dot{Q}'(t)}{\overline{\dot{Q}}(t)} = C\underline{x}(t) \cdot \left(1 + \gamma_1 \left(\frac{u'(t)}{\overline{u}}\right) + \gamma_2 \left(\frac{u'(t)}{\overline{u}}\right)^2\right) \end{cases}$$

Simulating the Self Exciting case with ASSM

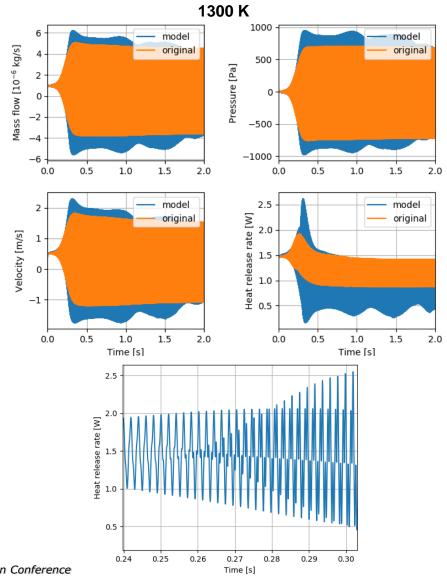
System self excites as expected

- Amplitudes are slightly higher
- Limit cycle not completely stable
- Resonance Frequency (1. mode):
 - Model 527 Hz (up to 550 Hz)
 - Original 527 Hz
 - FFT after 1.52 s

3rd mode gets amplified strongly

- after 0.26 s
- Could be a model problem of the ASSM:

 $u \sim \sin(\omega) \Rightarrow \text{Integrating } \sin^3(\omega) \text{ leaves a} \cos(3\omega) \text{ term } \Rightarrow 3^{\text{rd}} \text{ harmonic}$



Summary and Outlook

- Simple model only works for specific flow parameters
 - Easy to determine
 - Doesn't cover frequency dependencies of thermoacoustic effects
- ASSM model covers more thermoacoustic characteristics
 - More complex to determine
 - 30 simulations for the final HTF and non linear function each
 - New problems appear (3rd harmonic)
- Saving computational power leads to lower simulation times
 - Mesh with wires ≈34000 elements ⇒ 3 days on 4 CPU Cores
 - Mesh without wires ≈13000 elements ⇒ 2 days on 2 CPU Cores
- Outlook
 - Implementation into 1D CFD would reduce simulation time even more
 - Usage of simplified models to replace experiments ⇒ less time and cost

Questions?

Thank you for your attention

For any further questions feel free to contact me: paschke.dennis@gmx.de

HTF Model Determination

- Simulating a Transfer Function for the wires
 - Frequency dependent simulations
 - Different wire temperatures investigated
 - Called Heat Transfer Function (HTF)

$$HTF(i\omega) = \frac{\dot{Q}'(\omega)}{u'(\omega)} e^{-i\varphi} \cdot \frac{\bar{u}}{\bar{Q}}$$

- Calculation of a State Space model (SSM) for the Transfer Function
 - Model transformation into time domain

State Space Model
$$\begin{cases} & \underline{\dot{x}}(t) = A\underline{x}(t) + B\frac{u'(t)}{\overline{u}} \\ & \frac{q'(t)}{\overline{q}} = C\underline{x}(t) \end{cases}$$

- Feeding "Vector Fit" with discrete frequency dependent data leads to 6 dimensional state vectors (https://www.sintef.no/projectweb/vectfit/)
- Implicit model via User Fortran routine

$$\begin{cases} x^{n+1} = x^n + \Delta t \left[A \cdot x^{n+1} + B \cdot \frac{u'^{n+1}}{\overline{u}} \right] \\ \frac{\dot{Q}'^{n+1}}{\overline{\dot{Q}}} = C \cdot \underline{x}^{n+1} \end{cases}$$

Determination of and Simulation with the HTF

Determined HTF compared to Lighthills theory

- Amplitude reduction $\Rightarrow \frac{\dot{Q}'(\omega)/v'_{blw}(\omega)}{\dot{Q}'(\omega_0)/v'_{blw}(\omega_0)}$
- Results show same trend
- 24 simulations needed for the presented data only

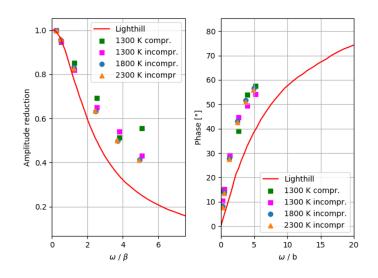
The Nonlinear Function (saturation)

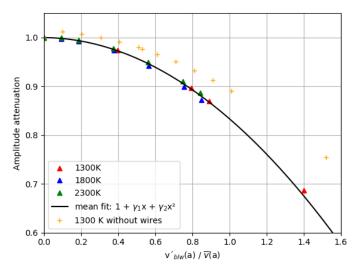
- Amplitude dependent simulations $\Rightarrow \frac{\dot{Q}'(a)/v'_{blw}(a)}{\dot{Q}'(a_0)/v'_{blw}(a_0)}$
- One function for all temperatures:

$$\Rightarrow \mathcal{N}\left(\frac{u'(t)}{\overline{u}}\right) = 1 + \gamma_1\left(\frac{u'(t)}{\overline{u}}\right) + \gamma_2\left(\frac{u'(t)}{\overline{u}}\right)^2$$

Implemented via User Fortran routine

$$ASSM(t,a) \begin{cases} \frac{\dot{x}(t) = A\underline{x}(t) + B\frac{u'(t)}{\overline{u}}}{\frac{\dot{Q}'(t)}{\overline{Q}(t)}} = C\underline{x}(t) \cdot \left(1 + \gamma_1 \left(\frac{u'(t)}{\overline{u}}\right) + \gamma_2 \left(\frac{u'(t)}{\overline{u}}\right)^2\right) \end{cases}$$

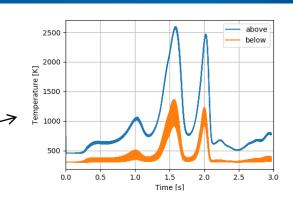


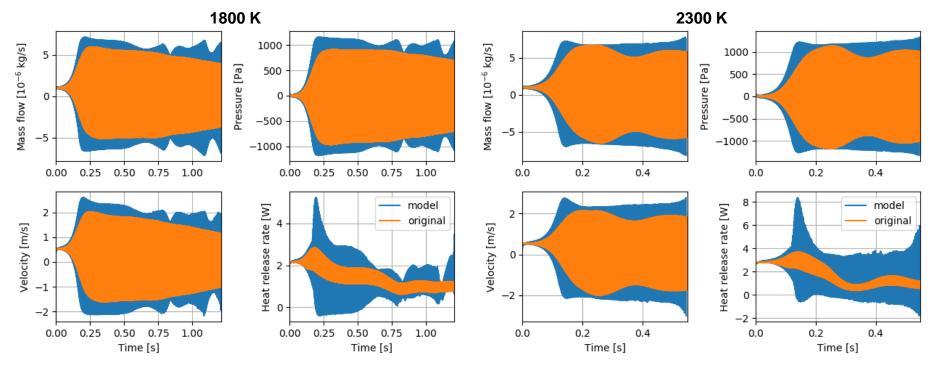


ASSM at 1800 K and 2300 K

System self excites as expected

- Amplitudes are slightly higher
- Temperature increase too strong
- At 1300K it's still high but doesn't explode
- Temperature explodes at higher wire temperatures

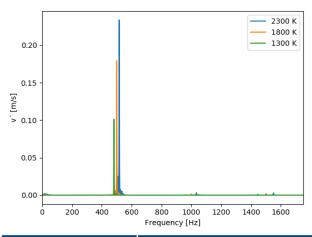


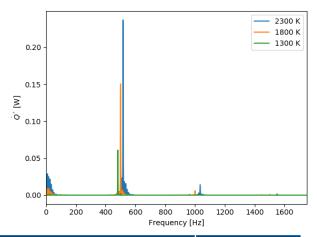


Fourier Analysis of the Rijke Tube

Resonance frequencies are excited

- Clean spectrum of the velocity fluctuation straight below the wires
- $-\dot{Q}'$ also oscillates at the 2nd harmonic (and at very low frequencies)
- Calculated frequencies are slightly higher
- End correction was neglected in the calculation





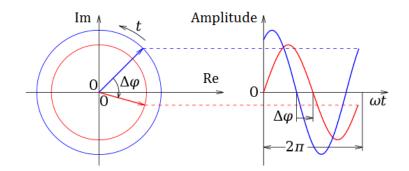
Parameter	Value				Unit
ΔT	0	1000	1500	2000	K
$f_{1,calc}$	434	489	511	529	Hz
$f_{1,sim}$	-	482	501	516	Hz

Determination of τ

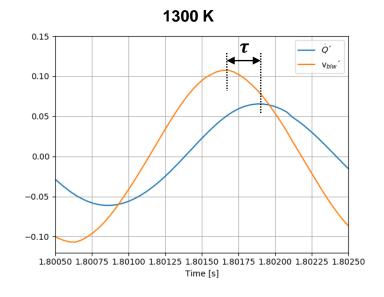
Calculating phase angle difference

- Using FFT data of v' and \dot{Q}'
- Calculate phase delay φ

$$- \quad oldsymbol{ au} = rac{\Delta arphi}{\omega} = rac{\Delta arphi}{2\pi \cdot f_1}$$

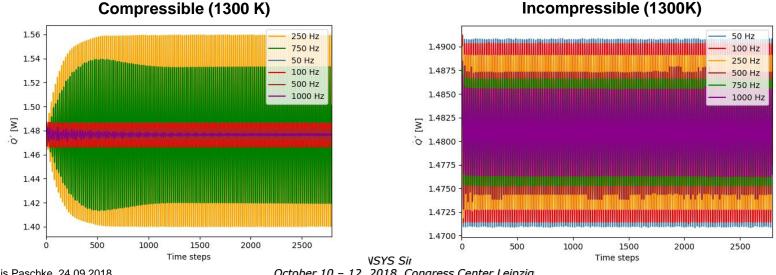


Parameter		Unit		
ΔT	1000	1500	2000	K
$f_{1,sim}$	482	501	516	Hz
$\Delta arphi$	42.32	41.39	41.02	0
τ	244	229	221	μs



Determination of the HTF

- Problem with compressible air model
 - At 250 and 750 Hz the oscillation amplitude gets amplified
 - Maybe a problem with the systems acoustics
 - Bypassing by using incompressible air
- Simulations with incompressible air show expected behavior
 - Density can still change when the temperature changes (Table Generation)
 - Heat Transfer Model: Thermal Energy



Final Heat Transfer Model

Derivation

$$\dot{Q}(t) = \overline{\dot{Q}}(t) + \dot{Q}'(t)$$

$$\dot{Q}(t) = f_0(\overline{u}(t)) + AHTF(\omega, a)$$

with
$$f_0(\overline{u}(t)) = \alpha + \beta \sqrt{\overline{u}(t)}$$

$$\dot{Q}(t) = f_0(\overline{u}(t)) + HTF(\omega) \cdot \mathcal{N}(a)$$

with
$$\mathcal{N}(a) = \mathcal{N}\left(\frac{u'(t)}{\overline{u}}\right) = 1 + \gamma_1 \left(\frac{u'(t)}{\overline{u}}\right) + \gamma_2 \left(\frac{u'(t)}{\overline{u}}\right)^2$$

$$HTF(\omega) \Rightarrow SSM(t) \begin{cases} \underline{\dot{x}}(t) = A\underline{x}(t) + B\frac{u'(t)}{\overline{u}} \\ \frac{\underline{\dot{Q}}'(t)}{\overline{\dot{Q}}(t)} = C\underline{x}(t) \end{cases}$$

$$AHTF(\omega, a) \Rightarrow ASSM(t, a) \begin{cases} \frac{\dot{\underline{x}}(t) = A\underline{x}(t) + B\frac{u'(t)}{\overline{u}}}{\overline{\varrho}(t)} \\ \frac{\dot{\varrho}'(t)}{\overline{\varrho}(t)} = C\underline{x}(t) \cdot \left(1 + \gamma_1 \left(\frac{u'(t)}{\overline{u}}\right) + \gamma_2 \left(\frac{u'(t)}{\overline{u}}\right)^2\right) \end{cases}$$